Nathan Dykes, M. A.

Nathan Dykes, M. A.

Wissenschaftlicher Mitarbeiter

Department of Digital Humanities and Social Studies (DHSS)
W3-Professur für Digital Humanities mit Schwerpunkt Computing Text and Language

Werner-von-Siemens-Str. 61
91052 Erlangen

Forschungsschwerpunkte:

  • Korpuslinguistik
  • Computerlinguistik
  • Diskursanalyse
  • Argument Mining
  • Legal Tech

Seit 10/2024

Wissenschaftlicher Mitarbeiter
FAU Erlangen-Nürnberg, Department of Digital Humanities and Social Studies (DHSS)

Seit 05/2018

Wissenschaftlicher Mitarbeiter und Doktorand
FAU Erlangen-Nürnberg, Lehrstuhl für Korpus- und Computerlinguistik (CCL)

02/2022 bis 09/2023

Wissenschaftlicher Mitarbeiter
FAU Erlangen-Nürnberg, Lehrstuhl für Anglistik, insbesondere Linguistik

2016-2020
Lehrbeauftragter für Schwedisch
FAU Erlangen-Nürnberg, Sprachenzentrum

Beiträge in Fachzeitschriften

Beiträge in Sammelwerken

Beiträge bei Tagungen

  • Argumentrekonstruktion aus Politischen Debatten

    (Drittmittelfinanzierte Einzelförderung)

    Laufzeit: 1. Januar 2021 - 31. Dezember 2023
    Mittelgeber: DFG / Schwerpunktprogramm (SPP)
    URL: https://www.linguistik.phil.fau.de/projects/rant/
    Politische Debatten liegen heutzutage zu großen Teilen in maschinenlesbarer Form vor – in der formellen Öffentlichkeit von Parlamentsdebatten ebenso wie in der Halböffentlichkeit sozialer Medien. Dies eröffnet die Möglichkeit, sich mit automatischen Textanalysemethoden einen breiten Überblick über die vorgebrachten Argumente zu verschaffen. Das Projekt RANT/RAND entwickelt im Rahmen des SPP RATIO (Robust Argumentation Machines) zu diesem Zweck einen kombinierten Ansatz, in den Methoden aus Logik und Korpuslinguistik einfließen. Da aufgrund der riesigen Menge verfügbarer Daten davon ausgegangen werden kann, dass alle wichtigen Argumente auch bei relativ niedriger Sensitivität gefunden werden, setzen unsere Verfahren auf hohe Genauigkeit (auf Kosten der Sensitivität). Dazu erstellen wir eine Liste von Logikmustern, die gängigen Argumentationsschemata entsprechen (z.B. Argumentum ad verecundiam) und im Wesentlichen als mit Platzhaltern versehene Formeln in speziellen Modallogiken betrachtet werden können. Jedes Logikmuster ist mit mehreren sprachlichen Realisierungen verknüpft, die in korpuslinguistischen Studien erarbeitet und gleichzeitig in Form von Suchanfragen operationalisiert werden. Unser Ansatz verbindet somit die Entwicklung automatischer Methoden zur Argumentextraktion mit neuen Erkenntnissen über linguistische Aspekte insbesondere der umgangssprachlichen politischen Argumentation. Die aktuell laufende erste Phase des Projekts konzentriert sich auf die Entwicklung und Evaluation von Logikmustern und korpuslinguistischen Suchanfragen für einzelne Argumente anhand einer Fallstudie auf einem großen englischsprachigen Twitter-Korpus. In der zweiten Projektphase werden wir die Robustheit unseres Ansatzes testen, indem wir weitere extsorten mit einbeziehen und insbesondere auch längere kohärente Texte wie Zeitungsartikel und Parlamentsdebatten analysieren. Zudem arbeiten wir in der zweiten Phase mit deutschsprachigen Texten, die mit korpuslinguistischen Suchanfragen wesentlich schwieriger zu erfassen sind (u.a. aufgrund diskontinuierlicher Konstituenten und eines deutlich kleineren Angebots qualitativ hochwertiger NLP-Werkzeuge). Ein weiterer entscheidender Schritt ist der Einsatz ähnlichkeitsbasierter Methoden, um aus den extrahierten Argumenten komplexe Schlussfolgerungen ziehen zu können. Dazu werden Platzhalter in den extrahierten Formeln mit speziell auf unsere Anforderungen zugeschnittenen Embedding-Vektoren ausgefüllt. Ferner werden wir unseren Ansatz auf die Extraktion von Argumentationsstrukturen, d.h. explizite und implizite Verweise zwischen Argumenten, ausdehnen. Ergänzend dazu werden wir die logische Struktur von Argumentation über Planung untersuchen und Querverbindungen zwischen Argumentation und zwischenmenschlichen Beziehungen herstellen (z.B. in Ad-hominem-Argumenten).
  • Rekonstruktion von Argumenten aus Noisy Text (SPP 1999: RATIO)

    (Drittmittelfinanzierte Einzelförderung)

    Laufzeit: 1. Januar 2018 - 31. Dezember 2020
    Mittelgeber: Deutsche Forschungsgemeinschaft (DFG)

    Soziale Medien spielen in der gesellschaftlichen Meinungsbildung eine wachsende Rolle. Gegenstand von RANT ist die Entwicklung von Methoden und Formalismen zur Extraktion, Repräsentation und Verarbeitung von Argumenten aus Texten geringer linguistischer Qualität, wie sie eben in Diskussionen auf sozialen Medien anzutreffen sind, anhand einer laufenden Fallstudie an einem großen Korpus von vor dem Referendum verbreiteten Twitter-Botschaften zum Thema Brexit. Wir werden eine korpuslinguistische Studie zur Identifikation wiederkehrender sprachlicher Argumentationsschemata durchführen und anhand dieser Schemata im Sinne eines High-Precision-Low-Recall-Ansatzes entsprechende Korpusanfragen zur Extraktion von Argumenten entwerfen. In der Tat erwarten wir, dass sich Argumentationsschemata unmittelbar mit logischen Schemata in einem dedizierten Formalismus in Verbindung bringen lassen und somit einzelne Argumente direkt als logische Formeln geparst werden können. Der zur Argumentrepräsentation verwendete Formalismus wird ein breites Spektrum an Modalitäten beinhalten, die in realen Texten auftretende sprachlich-semantische Phänomene wie Unsicherheit, Wirkung, Präferenz, Sentiment, Vagheit und Default-Implikation widerspiegeln. Wir werden einen solchen Formalismus als Familie von Instanzlogiken in der koalgebraischen Logik darstellen, die als generisches logisches Rahmenwerk vereinheitlichte semantische, deduktive und algorithmische Methoden für Modalitäten jenseits der üblichen relationalen Semantik zur Verfügung stellt; insbesondere werden wir Deduktionswerkzeuge für Argumentationslogiken auf bestehende generische koalgebraische Werkzeuge aufbauen. Die so entstehende logische Sprache zur Repräsentation einzelner Argumente wird ergänzt durch ein flexibles Rahmenwerk zur Repräsentation von Beziehungen zwischen Argumenten. Hierzu gehören sowohl in der Argumentationstheorie verbreitet betrachtete Relationen wie die Angriffs- und Unterstützungsrelationen sowie aus den Metadaten des Korpus gewonnene Beziehungen wie Zitation, Hashtags oder direkte Ansprache (per Erwähnung von Benutzernamen) als auch solche Beziehungen, die sich erst durch logische Schlussfolgerung aus dem Inhalt der Argumente ergeben. Insbesondere letztere Beziehungen stellen sich semantisch oft nicht als Relationen im engeren Sinne dar, sondern involvieren z.B. kontinuierliche Wahrheitswerte, Präferenzordnungen oder Wahrscheinlichkeiten und profitieren insofern von einer einheitlichen koalgebraischen Modellierung, die auch die semantische Grundlage der koalgebraischen bildet. Wir werden dementsprechend geeignete Verallgemeinerungen der für Dung's Argumentation Frameworks definierten Extensionssemantiken entwickeln und somit letztlich Begriffe wie „kohärenter Standpunkt“ oder „verbreitete Sichtweise“ formal einfangen; in Verbindung mit entsprechenden algorithmischen Methoden wird dies die automatisierte Extraktion umfassender argumentativer Positionen aus dem Korpus erlauben.

Organisation von Tagungen / Konferenzen